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Abstract: Sirimau District often experiences floods and landslides during the rainy season.
This study uses environmental variables and the coordinates of flood and landslide locations
for MaxEnt modeling. The results show that elevation and land use/land cover are the most
influential factors for floods (70.3% and 22.9%, respectively) and landslides (80.9% and 10.3%),
consistent with hydrology and physical geography theories. The flood and landslide
vulnerability levels are divided into three classes, with low and moderate risk areas
dominating, while high-risk areas require special attention for stricter management. Model
validation with high Area Under Curve (AUC) values (0.973 for floods and 0.845 for
landslides) ensures prediction reliability, which can serve as a basis for adaptive spatial data-
based mitigation policy making. Policy recommendations include strengthening early
warning systems, spatial planning based on risk zoning, and community capacity building,
which are expected to reduce social and economic impacts from disasters in this area
sustainably.
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1. Introduction

Hydrometeorological disasters, particularly floods and landslides, have become a
significant global challenge due to the impacts of climate change and uncontrolled
urbanization (Badan Nasional Penanggulangan Bencana 2025). In island regions like Ambon
City, particularly Sirimau District, vulnerability to this disaster increases exponentially due to
the steep topography and extreme rainfall intensity (Rakuasa and Khromykh 2025; Rifai et al.,
2025). The integration of Geographic Information Systems (GIS) and data-driven approaches
is crucial in mitigation efforts, considering that conventional methods are often limited in
handling the complexity of interactions between environmental variables (Rakuasa and Rifai
2025). Previous studies conducted in various regions have emphasized that precise risk
mapping is the cornerstone of urban resilience in developing countries.

In recent years, the application of machine learning algorithms has revolutionized
disaster spatial analysis due to its ability to handle non-linear and multivariate data (Park
2015). One method that shows superior performance is Maximum Entropy (MaxEnt)

https://jurnal.istekaisyiyah.id/index.php/ijsth 19




(Suhermat et al. 2024). Although initially developed for species distribution modeling,
research in the journal Heliyon shows that MaxEnt is highly effective for disaster prediction
because it only requires presence-only data (location of events), which is highly relevant for
regions with limited historical disaster inventory data but available environmental variables
(Ramos-Bernal, Vazquez-Jiménez, and Rojas 2024).

Flood analysis in this study requires the integration of variables representing the
physical and hydrological conditions of the area (Rakuasa et al. 2022). The main variables
involved include slope, elevation, Topographic Wetness Index (TWI), soil type, precipitation,
land use type, river density, and distance to river. Flood location data is used as training
samples for the algorithm. The use of TWI and river density is very critical, as explained in
the research conducted by Rakuasa & Pertuack (2025), because these variables determine the
soil infiltration capacity and the accumulation of surface water flow, which are the main
triggers of flooding in urban areas (Sajid et al. 2025).

Simultaneously, the analysis of landslides in Sirimau District requires different
parameters to capture the slope failure mechanism. Variables such as slope, slope aspect, TWI,
soil type, precipitation, land use type, distance to river, and distance to fault are the main
controlling factors. The addition of the distance to fault and slope aspect variables is very
important because slope stability in Ambon is highly influenced by tectonic activity and
exposure of sunlight to soil moisture. This approach aligns with the methodology used by
Tayyab et al. (2024), which emphasizes the importance of geological aspects in landslide
modeling.

The research gap filled by this study lies in the integration of multiple hazards using a
single MaxEnt framework in a densely populated small island region. Most previous studies
tend to separate the analysis of floods and landslides, even though both often share the same
trigger: extreme rainfall (Hao et al. 2024). By utilizing GIS as an integration platform, this
research is able to produce more holistic probability maps. Research conducted by Huang et
al. (2024), proves that the synergy between environmental variables and machine learning
results in higher prediction accuracy compared to traditional statistical models.

Overall, this research not only contributes to the scientific development of geospatial
science but also provides practical solutions for the Ambon City Government in risk-based
spatial planning. The results of this modeling are expected to serve as a scientific reference in
formulating more precise disaster adaptation policies at the sub-district level in Indonesia in
the future.

2. Methods

This research was conducted in Sirimau District, Ambon City, Maluku Province,
Indonesia (Figure 1). For flood modeling, variables included elevation, soil type, rainfall, land
use type, river density, and distance to rivers. For landslide modeling, variables comprised
elevation, slope gradient, soil type, rainfall, land use type, and distance to active faults.
Elevation and slope data were sourced from the Digital Elevation Model (DEM) of the
Geospatial Information Agency of Indonesia, soil type data from the Agriculture Service,
rainfall data from the Meteorology, Climatology, and Geophysics Agency (BMKG), and land
use data were interpreted from 3-meter resolution PlanetScope satellite imagery from Planet
Labs. Spatial analysis of river networks and active faults was performed to derive river
density and buffer distances to active faults. Presence data for flood events (20 locations) and
landslides (16 locations) from 2015 to 2025 were obtained from the National Disaster
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Management Agency (BNPB) and served as the basis for the probabilistic risk mapping
model.
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Figure 1. Study Area Location

The selection of environmental variables was based on previous studies and the
physical conditions of the research area. This research began with variable processing done in
ArcGIS Pro software and MaxEnt modeling for floods and landslides performed in Maximum
Entropy Species Distribution Modeling software. The Maximum Entropy (MaxEnt) algorithm
is a statistical-probabilistic modeling scheme initially initiated by Phillips et al., (2006), to
predict species spatial distributions. In a geospatial context, this model adopts a presence-only
methodology that effectively extracts correlations between actual event points and supporting
environmental variables, making it a highly robust instrument for analyzing geological factors
causing disasters (Javidan et al. 2021). Through the principle of maximum entropy, MaxEnt
transforms the limitations of observational data into a comprehensive probability distribution
without exceeding the available information constraints (Javidan et al. 2021). Fundamentally,
the primary goal of this approach is to estimate the probability of an event across the entire
spatial domain of the study area, where various causal factors act as moment constraints in
forming a coherent predictive distribution (Zuo et al. 2023).

The concept and theory of MaxEnt were explained by Sharma et al. (2024). The MaxEnt
model was developed for ecological modeling and species dispersal evaluation. The MaxEnt
model operates based on machine learning and generates spatial predictions using partial
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data (Zhang et al. 2018). The mathematical concept of MaxEnt can be seen in the formula
below:

n
H==C) pilnp, (1)
i=1

where H represents data entropy, p; denotes the probability of presence occurrence, and C is
a positive constant. Entropy H, as a function of p;, is maximized under empirical constraints.
According to the Maximum Entropy (ME) principle and the Lagrange multiplier approach,
the distribution is obtained when entropy is maximized at 1. Assuming the occurrence
parameters x are xy, X, .... X, with probabilities py, p, ... pp.
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According to the constraint conditions of Egs. (2) and (3), indefinite multiplicators (a and
a and By) are to create a new function to locate the dispersion when entropy is at its
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Utilizing inequality Inx < x — 1 Eq. (4) changes into:

X = Z Brfie (x1)
k-1

H < 211291 {pi exp [—‘X -\ BrFi (xi)] - 1} + " Bk F (5)

1 k=1 k=1

To acquire H as the most priority, the upper mathematical notion should be transformed into
an equation, and Pi is as follows:

P; = exp [—oc ZBka (xi)] d=12....n (6)
k=1

Equations (2) and (6) give as follows:
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To acquire the value of S, Eq. (7) is substituted into constraint Eq. (3):

Fl = Zl {—fk (x)exp [— Z Bufi (xa]}/z ®)

In Eq. (8), both Fk and fk (xi ) are known; however, the true unknowns are m values of B (1,
p2...pm). The m expressions contain mp values, resulting in the value of pi when entropy is at
its maximum (Cabrera and Lee 2020). The results from discrete conditions might also be
applied to continuous situations (Cabrera and Lee 2020).

Sirimau District, Sirimau District,
Ambon City Ambon City
Environmental Flood Incident Environmental Landslide Incident
Variables Locations * 75% Training Variables Locations * 75% Training

‘ Dataset
- * 25% Validatin
Dataset

Dataset
* 25% Validatin
Dataset

* 10 Repetitions
* 5000

Slope Aspect

* 10 Repetitions
* 5000

Iterations

Iterations
DEM |

DEM

Maximum Maximum
Entropy Entropy

Distance from R NGt Distance from
{ ver Networl
River Network Rier l River l
River Density } Flood Susceptibilty / Active Fault _’l—Dﬁanuﬁte o / Landslide /

.

Sirimau Sub-District Suscgptmlél)l_t;{1 S_énmau
Soil Type H Soil Type | | Soil Type H Soil Type | ub-Distri

Rainfal H Rainfal | Rainfal H Rainfal |

PlanetScope PlanetScope
Satellite Imagery Eaalise 2020 Satelite Imagery || Land Use 2026

@ ®

Figure 2. Model Workflow: (a) Flood, (b) Landslide

The process begins with the preparation of environmental variables that cause floods
and landslides, followed by the classification and collection of event data. These
environmental variables, along with the coordinates of the flood and landslide locations, were
input into the MaxEnt software for flood modeling. The MaxEnt model was configured with
75% of the data for training and 25% for testing/validation (Kalmar et al. 2024). The collected
flood and landslide occurrence data were used to train the MaxEnt model to learn the
relationship between the presence of floods/landslides and environmental variables.
Validation data is used to test the accuracy of the model through performance parameters
such as Area Under the Curve (AUC). After training and validation, MaxEnt generated flood
and landslide vulnerability distribution maps classified into high-, medium-, and low-risk
zones based on probability scores. The model's output data was analyzed to identify the main
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factors influencing flood vulnerability and the most vulnerable areas. These results are
presented in the form of maps and statistics to support future flood mitigation decision-
making. The entire working process is illustrated in Figure 2.

3. Results and Discussion
3.1. Environmental Variables

The contribution of environmental variables to flood occurrences in Sirimau District,
Ambon City, shows that elevation has a dominant influence of 70.3%. This aligns with
hydrological theory stating that elevation affects water flow and relative position to water
sources that trigger floods. land use/land cover (LUCL) contributes a significant 22.9%,
indicating the importance of LULC in accelerating or obstructing surface water flow,
especially in urban areas and regions experiencing land use changes. Rainfall contributes
3.3%, which, though relatively small in this model, remains an important factor as the primary
water source causing floods. River flow density, distance to rivers, and soil type each
contribute less than 2%, but still remain relevant in determining the flow and storage of
floodwater.
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Figure 3. Environmental variables: a) elevation, b) slope, c) distance from river, d) stream
density, e) rainfall, f) soil type, g) LULC, h) distance from fault
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In landslide occurrences, LULC contributes the most at 80.9%, reflecting the role of
vegetation cover in maintaining slope stability and reducing the risk of erosion and slope
failure. Elevation contributes 10.3%, indicating that the elevation position of the slope remains
important in landslide events, supported by slope gradient at 4.2%, which determines the
potential for soil movement. Soil type contributes 2.6%, related to the physical characteristics
and strength of the soil in bearing load. Distance to active faults contributes only 1%, showing
a spatial relationship with fault zones that can trigger slope failure. Rainfall contributes just
1%, indicating that although precipitation is an important trigger, the long-term influence of
vegetation condition and terrain characteristics is more dominant in landslide modeling in
Sirimau (Rakuasa & Pertuack 2025). The full set of variables used can be seen in Figure 4.

Thus, the dominance of elevation and LULC for floods and landslides highlights the
importance of integrating variables that describe physical conditions and land use in spatial
disaster risk modeling . This also aligns with literature findings that rapid land use change
and topographic instability are key factors to consider in disaster mitigation. The MaxEnt-
based spatial approach allows risk mapping that effectively accounts for the relative
contributions of these variables for adaptive and evidence-based disaster management.
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Figure 4. Flood Vulnerability Levels

3.2. Flood vulnerability in Sirimau District

The flood hazard vulnerability levels in Sirimau District are divided into three classes:
low, medium, and high. Data shows that the area classified as low flood hazard is the most
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dominant, covering 3,299.18 hectares, followed by the medium class with 125.69 hectares, and
the high class with 259.41 hectares (Figure 2). This situation reflects that most of Sirimau
District has a relatively low flood risk, closely related to the region’s topography dominated
by hills and mountains, which reduces the potential for extensive water pooling. However,
the high hazard class area, approximately 259.41 hectares, requires special attention due to its
greater flood risk potential. The complete flood area in Sirimau Subdistrict can be seen in

Figure 1.
Table 1. Flood Area in Sirimau District
Flood Class Area (ha) %
Low 3.299.18 89.55
Medium 125.69 3.41
High 259.41 7.04
Total area 3.684.28  100.00

Understanding the distribution of hazard classes is crucial for flood disaster risk
management in Sirimau District. Information on flood vulnerability distribution enables
appropriate policy-making in spatial planning and disaster mitigation, such as settlement
arrangement and flood control infrastructure development (Latue et al., 2023). Generally,
areas with low hazard levels can be considered safer zones for development, while medium
and high hazard areas require greater attention in supervision and mitigation efforts to
minimize disaster impacts (Allafta and Opp 2021). GIS-based and multi-criteria approaches
are widely recommended in flood risk literature to produce reliable hazard maps that support
effective decision-making (Demissie et al. 2024).

3.3. Landslide Vulnerability in Sirimau District

The landslide hazard vulnerability in Sirimau District is divided into three classes: low,
medium, and high, covering areas of 1,943.66 hectares for the low class, 1,510.61 hectares for
the medium class, and 227.73 hectares for the high class. The complete landslide area in
Sirimau Subdistrict can be seen in Figure 2. This distribution reflects that areas with low and
medium landslide risk dominate the Sirimau region, while the high hazard area is relatively
small. This condition is closely related to topographic and slope characteristics, high rainfall
intensity, and varied land use types (Rakuasa et al., 2022). Areas with high hazard levels
require special attention in spatial utilization management and mitigation efforts to minimize
landslide disaster risk. Landslide-prone areas can be seen in Figure 5.

Table 2. Landslide Area Extent in Sirimau Sub-District

Landslide Class Area (ha) %

Low 1943.66 52.76
Medium 1510.64 41.00
High 229.98 6.24
Total area 3684.28  100.00

A thorough understanding of landslide vulnerability levels is crucial in planning and
implementing disaster mitigation strategies in Sirimau District (Somae et al. 2022). Spatial
data on landslide vulnerability enables local governments and stakeholders to create more
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effective land use control policies, strengthen early warning systems, and apply technical
measures for slope stabilization (Souisa, Hendrajaya, and Handayani 2016). The application
of spatial planning guidelines based on vulnerability levels is supported by relevant
regulations and scientifically tested disaster risk models, providing a solid foundation for
reducing landslide disaster risk in vulnerable areas (Rakuasa et al., 2025).
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Figure 5. Landslide Vulnerability Levels

3.4. Flood and Landslide Model Validation Test

The Area Under Curve (AUC) value is an important indicator for measuring the
accuracy of disaster hazard prediction models, including floods and landslides. In the
validation test of the flood model in Sirimau District, an AUC value of 0.973 indicates that this
model has a very good ability to distinguish between flood-prone and non-flood-prone
locations. An AUC value close to 1 signifies high sensitivity and specificity of the model,
making it reliable for mitigation planning and policy-making in flood disaster management
(Kalmar et al. 2024).

Meanwhile, the landslide model validation with an AUC value of 0.845 also
demonstrates good model performance in predicting areas at risk of landslides. An AUC
value above 0.8 is categorized as a good model according to standards in geography and
disaster mitigation literature (Hu, Pang, and Deng 2025). This model utilizes various
topographic variables, land use, and other environmental factors to produce landslide
vulnerability maps that can serve as strategic tools in risk management for vulnerable areas,
including Sirimau District.
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The use of AUC in model validation provides scientific assurance regarding the
reliability of prediction results and forms the basis for developing targeted mitigation policies.
With flood and landslide models validated by high AUC values, mitigation efforts can be
more focused on high-risk areas, reducing potential social and economic losses due to
disasters (Harshasimha and Bhatt 2023). This is particularly important given the complexity
of geographic characteristics and the dynamic environmental conditions influencing flood
and landslide occurrences in tropical regions such as Sirimau District.

4.5. Policy Recommendations

Policy recommendations for managing flood and landslide disasters in Sirimau Sub-
District, Ambon City, Maluku must be based on a comprehensive understanding of the
vulnerability and risk levels identified spatially. First, local governments need to strengthen
integrated early warning systems and rapid response to extreme weather events that could
trigger floods and landslides (Bosher & Chmutina, 2017). This includes enhancing rainfall
monitoring, river conditions, and slope stability, as well as disseminating information through
local media and digital platforms so the community can take preventive measures early (Shi
et al. 2020).

Second, spatial planning must adopt a strict disaster risk zoning approach, especially
avoiding development in high vulnerability areas such as steep slopes and riverbanks prone
to flooding (Kamil et al. 2020). The construction of flood control infrastructure, such as
retaining walls, adequate drainage channels, and revegetation in critical areas, must be carried
out to stabilize slopes and reduce the potential for erosion and landslides (Masocha et al.
2025). Repair and normalization of access routes affected by landslides should also be
prioritized to ensure community mobility is not disrupted.

Third, increasing community capacity through education and disaster preparedness
training is very important. Communities must be engaged to understand danger signs,
evacuation procedures, and the importance of following instructions from disaster
management authorities (Rakuasa, Latue, and Pakniany 2024). In addition, the provision of
logistical aid and emergency support facilities for affected residents must be maintained to
ensure a quick and effective response. To strengthen mitigation efforts, cross-sector
collaboration between city and provincial governments, the National Disaster Management
Agency (BNPB), and non-governmental organizations needs to be intensified for the
implementation of sustainable and holistic programs.

Conclusions

Environmental variable analysis shows that floods and landslides in Sirimau Sub-
District, Ambon City are influenced by different dominant factors elevation for floods (70.3%)
and LULC for landslides (80.9%) reflecting the complex disaster risk dynamics in the region.
Vulnerability levels for both hazards mostly fall within low to medium risk categories, but
high-risk zones, though smaller, require special mitigation attention. Model validation using
high AUC values (0.973 for floods and 0.845 for landslides) confirms the reliability of the
MaxEnt method in accurately predicting vulnerable areas with minimal error and good
sensitivity. Effective risk management should integrate spatial data with early warning
systems, risk zoning in spatial planning, and community capacity building for disaster
preparedness to sustainably reduce social and economic impacts.
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