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Abstract: Sirimau District often experiences floods and landslides during the rainy season. 

This study uses environmental variables and the coordinates of flood and landslide locations 

for MaxEnt modeling. The results show that elevation and land use/land cover are the most 

influential factors for floods (70.3% and 22.9%, respectively) and landslides (80.9% and 10.3%), 

consistent with hydrology and physical geography theories. The flood and landslide 

vulnerability levels are divided into three classes, with low and moderate risk areas 

dominating, while high-risk areas require special attention for stricter management. Model 

validation with high Area Under Curve (AUC) values (0.973 for floods and 0.845 for 

landslides) ensures prediction reliability, which can serve as a basis for adaptive spatial data-

based mitigation policy making. Policy recommendations include strengthening early 

warning systems, spatial planning based on risk zoning, and community capacity building, 

which are expected to reduce social and economic impacts from disasters in this area 

sustainably. 
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1. Introduction 

Hydrometeorological disasters, particularly floods and landslides, have become a 

significant global challenge due to the impacts of climate change and uncontrolled 

urbanization (Badan Nasional Penanggulangan Bencana 2025). In island regions like Ambon 

City, particularly Sirimau District, vulnerability to this disaster increases exponentially due to 

the steep topography and extreme rainfall intensity (Rakuasa and Khromykh 2025; Rifai et al., 

2025). The integration of Geographic Information Systems (GIS) and data-driven approaches 

is crucial in mitigation efforts, considering that conventional methods are often limited in 

handling the complexity of interactions between environmental variables (Rakuasa and Rifai 

2025). Previous studies conducted in various regions have emphasized that precise risk 

mapping is the cornerstone of urban resilience in developing countries. 

In recent years, the application of machine learning algorithms has revolutionized 

disaster spatial analysis due to its ability to handle non-linear and multivariate data (Park 

2015). One method that shows superior performance is Maximum Entropy (MaxEnt) 
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(Suhermat et al. 2024). Although initially developed for species distribution modeling, 

research in the journal Heliyon shows that MaxEnt is highly effective for disaster prediction 

because it only requires presence-only data (location of events), which is highly relevant for 

regions with limited historical disaster inventory data but available environmental variables 

(Ramos-Bernal, Vázquez-Jiménez, and Rojas 2024). 

Flood analysis in this study requires the integration of variables representing the 

physical and hydrological conditions of the area (Rakuasa et al. 2022). The main variables 

involved include slope, elevation, Topographic Wetness Index (TWI), soil type, precipitation, 

land use type, river density, and distance to river. Flood location data is used as training 

samples for the algorithm. The use of TWI and river density is very critical, as explained in 

the research conducted by Rakuasa & Pertuack (2025), because these variables determine the 

soil infiltration capacity and the accumulation of surface water flow, which are the main 

triggers of flooding in urban areas (Sajid et al. 2025). 

Simultaneously, the analysis of landslides in Sirimau District requires different 

parameters to capture the slope failure mechanism. Variables such as slope, slope aspect, TWI, 

soil type, precipitation, land use type, distance to river, and distance to fault are the main 

controlling factors. The addition of the distance to fault and slope aspect variables is very 

important because slope stability in Ambon is highly influenced by tectonic activity and 

exposure of sunlight to soil moisture. This approach aligns with the methodology used by 

Tayyab et al. (2024), which emphasizes the importance of geological aspects in landslide 

modeling. 

The research gap filled by this study lies in the integration of multiple hazards using a 

single MaxEnt framework in a densely populated small island region. Most previous studies 

tend to separate the analysis of floods and landslides, even though both often share the same 

trigger: extreme rainfall (Hao et al. 2024). By utilizing GIS as an integration platform, this 

research is able to produce more holistic probability maps. Research conducted by Huang et 

al. (2024),  proves that the synergy between environmental variables and machine learning 

results in higher prediction accuracy compared to traditional statistical models. 

Overall, this research not only contributes to the scientific development of geospatial 

science but also provides practical solutions for the Ambon City Government in risk-based 

spatial planning. The results of this modeling are expected to serve as a scientific reference in 

formulating more precise disaster adaptation policies at the sub-district level in Indonesia in 

the future. 

 

2. Methods 

This research was conducted in Sirimau District, Ambon City, Maluku Province, 

Indonesia (Figure 1). For flood modeling, variables included elevation, soil type, rainfall, land 

use type, river density, and distance to rivers. For landslide modeling, variables comprised 

elevation, slope gradient, soil type, rainfall, land use type, and distance to active faults. 

Elevation and slope data were sourced from the Digital Elevation Model (DEM) of the 

Geospatial Information Agency of Indonesia, soil type data from the Agriculture Service, 

rainfall data from the Meteorology, Climatology, and Geophysics Agency (BMKG), and land 

use data were interpreted from 3-meter resolution PlanetScope satellite imagery from Planet 

Labs. Spatial analysis of river networks and active faults was performed to derive river 

density and buffer distances to active faults. Presence data for flood events (20 locations) and 

landslides (16 locations) from 2015 to 2025 were obtained from the National Disaster 
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Management Agency (BNPB) and served as the basis for the probabilistic risk mapping 

model. 

 

 
Figure 1. Study Area Location 

 

The selection of environmental variables was based on previous studies and the 

physical conditions of the research area. This research began with variable processing done in 

ArcGIS Pro software and MaxEnt modeling for floods and landslides performed in Maximum 

Entropy Species Distribution Modeling software. The Maximum Entropy (MaxEnt) algorithm 

is a statistical-probabilistic modeling scheme initially initiated by Phillips et al., (2006), to 

predict species spatial distributions. In a geospatial context, this model adopts a presence-only 

methodology that effectively extracts correlations between actual event points and supporting 

environmental variables, making it a highly robust instrument for analyzing geological factors 

causing disasters (Javidan et al. 2021). Through the principle of maximum entropy, MaxEnt 

transforms the limitations of observational data into a comprehensive probability distribution 

without exceeding the available information constraints (Javidan et al. 2021). Fundamentally, 

the primary goal of this approach is to estimate the probability of an event across the entire 

spatial domain of the study area, where various causal factors act as moment constraints in 

forming a coherent predictive distribution (Zuo et al. 2023). 

The concept and theory of MaxEnt were explained by Sharma et al. (2024). The MaxEnt 

model was developed for ecological modeling and species dispersal evaluation. The MaxEnt 

model operates based on machine learning and generates spatial predictions using partial 
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data (Zhang et al. 2018). The mathematical concept of MaxEnt can be seen in the formula 

below: 

 

 

𝐻 = −𝐶 ∑ 𝑝𝑖  𝑙𝑛𝑝𝑖

𝑛

𝑖=1

                                                                                                                              (1) 

 

where 𝐻 represents data entropy, 𝜌𝑖 denotes the probability of presence occurrence, and 𝐶 is 

a  positive constant. Entropy 𝐻, as a function of 𝑝𝑖, is maximized under empirical constraints. 

According to the Maximum Entropy (ME) principle and the Lagrange multiplier approach, 

the distribution is obtained when entropy is maximized at 1. Assuming the occurrence 

parameters 𝑥  are 𝑥1, 𝑥2, … . 𝑥𝑛  with probabilities 𝑝1, 𝑝, … . 𝑝𝑛.  

 

∑ 𝑝𝑖

𝑛

𝑖=1

 = 1, 𝑝𝑖 ≥ 0                                                                                                                                 (2) 

 
The averge Fk  is as follows: 
 

 𝐹𝑘 = ∑ 𝑓𝑥

𝑛

𝑖=1

(𝑥1)𝑝𝑖 = 1.2 … . . 𝑚 (𝑚 < 𝑛)                                                                                    (3) 

 
According to the constraint conditions of Eqs. (2) and (3), indefinite multiplicators (α and 
𝛼 𝑎𝑛𝑑 𝛽𝑘) are to create a new function to locate the dispersion when entropy is at its 
maximum: 𝐻 − 𝛼 − 𝛽1 𝐹1  − 𝛽2 𝐹2 − ⋯ −𝛽𝑚  𝐹𝑚:  
 

𝐻 − 𝛼 − ∑ 𝛽𝑘

𝑚

𝑘=1

𝐹𝑘 =  − ∑ 𝑝𝑖𝑙𝑛𝑝𝑖

𝑛

𝑖=1

−∝  ∑ 𝑝𝑖

𝑛

𝑖=1

− ∑ 𝛽𝑘

𝑚

𝑘=1

 

= ∑ 𝑝𝑖

𝑛

𝑖=1

 𝑙𝑛 {
1

𝑝𝑖
 𝑒𝑥𝑝 [ −

∝ − ∑ 𝛽𝑘𝑓𝑘  (𝑥1)

𝑚

𝑘−1

[}                                                                                                 (4) 

 
Utilizing inequality lnx ≤ x − 1 Eq. (4) changes into: 
 

𝐻 ≤ ∑ 𝑝1

𝑛

𝑖=1
 {

1

𝑝1
 𝑒𝑥𝑝 [−∝ − ∑ 𝛽𝑘𝐹𝑘 (𝑥𝑖)

𝑚

𝑘=1
] − 1} +∝ ∑ 𝛽𝑘

𝑚

𝑘=1
𝐹𝑘                                 (5) 

 
To acquire H as the most priority, the upper mathematical notion should be transformed into 
an equation, and Pi is as follows: 
 

𝑃𝑖 = exp [−∝  ∑ 𝛽𝑘𝐹𝑘  (𝑥𝑖)

𝑚

𝑘=𝑙

] . 𝑖 =  12 … . . 𝑛                                                                                 (6) 

 
Equations (2) and (6) give as follows: 
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∝= 𝑙𝑛 {∑ 𝑒𝑥𝑝

𝑛

𝑖=𝑙

[[−[− ∑ 𝛽𝑘𝑓𝑘  (𝑥𝑖)

𝑚

𝑘=1

]} . 𝑖𝑓𝑍 = 𝑒∝. 𝑡ℎ𝑒𝑛 𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛𝑡𝑜 

 

𝑧 = 𝑙𝑛 ∑ 𝑒𝑥𝑝

𝑛

𝑖=𝑙

[[− ∑ 𝛽𝑘𝑓𝑘  (𝑥𝑖)

𝑚

𝑘=1

] . 𝑤ℎ𝑒𝑟𝑒 𝑍 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                                            

  
Consequently: 
 

𝑝𝑖 =
{𝑒𝑥𝑝 [−  ∑ 𝛽𝑘𝑓𝑘 (𝑥𝑖)𝑚

𝑘=1 ]}

𝑧
                                                                                                        (7) 

 
To acquire the value of 𝛽𝑘, Eq. (7) is substituted into constraint Eq. (3): 
 

𝐹𝑘 = ∑ {−𝑓𝑘(𝑥𝑖)𝑒𝑥𝑝 [− ∑ 𝛽𝑘𝑓𝑘  (𝑥𝑖)

𝑚

𝑖=𝑙

]} /𝑧

𝑛

𝑖=𝑙

                                                                                    (8) 

 
In Eq. (8), both Fk and fk (xi ) are known; however, the true unknowns are m values of β (β1, 
β2…βm). The m expressions contain mβ values, resulting in the value of pi when entropy is at 
its maximum (Cabrera and Lee 2020). The results from discrete conditions might also be 
applied to continuous situations (Cabrera and Lee 2020). 
 

 
Figure 2. Model Workflow: (a) Flood, (b) Landslide 

 
The process begins with the preparation of environmental variables that cause floods 

and landslides, followed by the classification and collection of event data. These 
environmental variables, along with the coordinates of the flood and landslide locations, were 
input into the MaxEnt software for flood modeling. The MaxEnt model was configured with 
75% of the data for training and 25% for testing/validation (Kalmar et al. 2024). The collected 
flood and landslide occurrence data were used to train the MaxEnt model to learn the 
relationship between the presence of floods/landslides and environmental variables. 
Validation data is used to test the accuracy of the model through performance parameters 
such as Area Under the Curve (AUC). After training and validation, MaxEnt generated flood 
and landslide vulnerability distribution maps classified into high-, medium-, and low-risk 
zones based on probability scores. The model's output data was analyzed to identify the main 
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factors influencing flood vulnerability and the most vulnerable areas. These results are 
presented in the form of maps and statistics to support future flood mitigation decision-
making. The entire working process is illustrated in Figure 2. 
 
3. Results and Discussion 

3.1. Environmental Variables 

The contribution of environmental variables to flood occurrences in Sirimau District, 

Ambon City, shows that elevation has a dominant influence of 70.3%. This aligns with 

hydrological theory stating that elevation affects water flow and relative position to water 

sources that trigger floods. land use/land cover (LUCL) contributes a significant 22.9%, 

indicating the importance of LULC in accelerating or obstructing surface water flow, 

especially in urban areas and regions experiencing land use changes. Rainfall contributes 

3.3%, which, though relatively small in this model, remains an important factor as the primary 

water source causing floods. River flow density, distance to rivers, and soil type each 

contribute less than 2%, but still remain relevant in determining the flow and storage of 

floodwater. 

 
Figure 3. Environmental variables: a) elevation, b) slope, c) distance from river,  d) stream 

density,  e) rainfall, f) soil type, g) LULC, h) distance from fault 
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In landslide occurrences, LULC contributes the most at 80.9%, reflecting the role of 

vegetation cover in maintaining slope stability and reducing the risk of erosion and slope 

failure. Elevation contributes 10.3%, indicating that the elevation position of the slope remains 

important in landslide events, supported by slope gradient at 4.2%, which determines the 

potential for soil movement. Soil type contributes 2.6%, related to the physical characteristics 

and strength of the soil in bearing load. Distance to active faults contributes only 1%, showing 

a spatial relationship with fault zones that can trigger slope failure. Rainfall contributes just 

1%, indicating that although precipitation is an important trigger, the long-term influence of 

vegetation condition and terrain characteristics is more dominant in landslide modeling in 

Sirimau (Rakuasa & Pertuack 2025). The full set of variables used can be seen in Figure 4. 

Thus, the dominance of elevation and LULC for floods and landslides highlights the 

importance of integrating variables that describe physical conditions and land use in spatial 

disaster risk modeling . This also aligns with literature findings that rapid land use change 

and topographic instability are key factors to consider in disaster mitigation. The MaxEnt-

based spatial approach allows risk mapping that effectively accounts for the relative 

contributions of these variables for adaptive and evidence-based disaster management. 

 

 
Figure 4. Flood Vulnerability Levels 

 

3.2. Flood vulnerability in Sirimau District 

The flood hazard vulnerability levels in Sirimau District are divided into three classes: 

low, medium, and high. Data shows that the area classified as low flood hazard is the most 
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dominant, covering 3,299.18 hectares, followed by the medium class with 125.69 hectares, and 

the high class with 259.41 hectares (Figure 2). This situation reflects that most of Sirimau 

District has a relatively low flood risk, closely related to the region’s topography dominated 

by hills and mountains, which reduces the potential for extensive water pooling. However, 

the high hazard class area, approximately 259.41 hectares, requires special attention due to its 

greater flood risk potential. The complete flood area in Sirimau Subdistrict can be seen in 

Figure 1. 

Table 1. Flood Area in Sirimau District 

Flood Class Area (ha) % 

Low 3.299.18 89.55 

Medium 125.69 3.41 

High 259.41 7.04 

Total area 3.684.28 100.00 

 

Understanding the distribution of hazard classes is crucial for flood disaster risk 

management in Sirimau District. Information on flood vulnerability distribution enables 

appropriate policy-making in spatial planning and disaster mitigation, such as settlement 

arrangement and flood control infrastructure development (Latue et al., 2023). Generally, 

areas with low hazard levels can be considered safer zones for development, while medium 

and high hazard areas require greater attention in supervision and mitigation efforts to 

minimize disaster impacts (Allafta and Opp 2021). GIS-based and multi-criteria approaches 

are widely recommended in flood risk literature to produce reliable hazard maps that support 

effective decision-making (Demissie et al. 2024). 

 

3.3. Landslide Vulnerability in Sirimau District 

 The landslide hazard vulnerability in Sirimau District is divided into three classes: low, 

medium, and high, covering areas of 1,943.66 hectares for the low class, 1,510.61 hectares for 

the medium class, and 227.73 hectares for the high class. The complete landslide area in 

Sirimau Subdistrict can be seen in Figure 2. This distribution reflects that areas with low and 

medium landslide risk dominate the Sirimau region, while the high hazard area is relatively 

small. This condition is closely related to topographic and slope characteristics, high rainfall 

intensity, and varied land use types (Rakuasa et al., 2022). Areas with high hazard levels 

require special attention in spatial utilization management and mitigation efforts to minimize 

landslide disaster risk. Landslide-prone areas can be seen in Figure 5. 

 

Table 2. Landslide Area Extent in Sirimau Sub-District 

Landslide Class Area (ha) % 

Low 1943.66 52.76 

Medium 1510.64 41.00 

High 229.98 6.24 

Total area 3684.28 100.00 

 

 A thorough understanding of landslide vulnerability levels is crucial in planning and 

implementing disaster mitigation strategies in Sirimau District (Somae et al. 2022). Spatial 

data on landslide vulnerability enables local governments and stakeholders to create more 
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effective land use control policies, strengthen early warning systems, and apply technical 

measures for slope stabilization (Souisa, Hendrajaya, and Handayani 2016). The application 

of spatial planning guidelines based on vulnerability levels is supported by relevant 

regulations and scientifically tested disaster risk models, providing a solid foundation for 

reducing landslide disaster risk in vulnerable areas (Rakuasa et al., 2025).  

 
Figure 5. Landslide Vulnerability Levels 

 

3.4. Flood and Landslide Model Validation Test 

 The Area Under Curve (AUC) value is an important indicator for measuring the 

accuracy of disaster hazard prediction models, including floods and landslides. In the 

validation test of the flood model in Sirimau District, an AUC value of 0.973 indicates that this 

model has a very good ability to distinguish between flood-prone and non-flood-prone 

locations. An AUC value close to 1 signifies high sensitivity and specificity of the model, 

making it reliable for mitigation planning and policy-making in flood disaster management 

(Kalmar et al. 2024). 

Meanwhile, the landslide model validation with an AUC value of 0.845 also 

demonstrates good model performance in predicting areas at risk of landslides. An AUC 

value above 0.8 is categorized as a good model according to standards in geography and 

disaster mitigation literature (Hu, Pang, and Deng 2025). This model utilizes various 

topographic variables, land use, and other environmental factors to produce landslide 

vulnerability maps that can serve as strategic tools in risk management for vulnerable areas, 

including Sirimau District. 
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The use of AUC in model validation provides scientific assurance regarding the 

reliability of prediction results and forms the basis for developing targeted mitigation policies. 

With flood and landslide models validated by high AUC values, mitigation efforts can be 

more focused on high-risk areas, reducing potential social and economic losses due to 

disasters (Harshasimha and Bhatt 2023). This is particularly important given the complexity 

of geographic characteristics and the dynamic environmental conditions influencing flood 

and landslide occurrences in tropical regions such as Sirimau District. 

 

4.5. Policy Recommendations 

Policy recommendations for managing flood and landslide disasters in Sirimau Sub-

District, Ambon City, Maluku must be based on a comprehensive understanding of the 

vulnerability and risk levels identified spatially. First, local governments need to strengthen 

integrated early warning systems and rapid response to extreme weather events that could 

trigger floods and landslides (Bosher & Chmutina, 2017). This includes enhancing rainfall 

monitoring, river conditions, and slope stability, as well as disseminating information through 

local media and digital platforms so the community can take preventive measures early (Shi 

et al. 2020). 

Second, spatial planning must adopt a strict disaster risk zoning approach, especially 

avoiding development in high vulnerability areas such as steep slopes and riverbanks prone 

to flooding (Kamil et al. 2020). The construction of flood control infrastructure, such as 

retaining walls, adequate drainage channels, and revegetation in critical areas, must be carried 

out to stabilize slopes and reduce the potential for erosion and landslides (Masocha et al. 

2025). Repair and normalization of access routes affected by landslides should also be 

prioritized to ensure community mobility is not disrupted. 

Third, increasing community capacity through education and disaster preparedness 

training is very important. Communities must be engaged to understand danger signs, 

evacuation procedures, and the importance of following instructions from disaster 

management authorities (Rakuasa, Latue, and Pakniany 2024). In addition, the provision of 

logistical aid and emergency support facilities for affected residents must be maintained to 

ensure a quick and effective response. To strengthen mitigation efforts, cross-sector 

collaboration between city and provincial governments, the National Disaster Management 

Agency (BNPB), and non-governmental organizations needs to be intensified for the 

implementation of sustainable and holistic programs. 

 

Conclusions 

Environmental variable analysis shows that floods and landslides in Sirimau Sub-

District, Ambon City are influenced by different dominant factors elevation for floods (70.3%) 

and LULC for landslides (80.9%) reflecting the complex disaster risk dynamics in the region. 

Vulnerability levels for both hazards mostly fall within low to medium risk categories, but 

high-risk zones, though smaller, require special mitigation attention. Model validation using 

high AUC values (0.973 for floods and 0.845 for landslides) confirms the reliability of the 

MaxEnt method in accurately predicting vulnerable areas with minimal error and good 

sensitivity. Effective risk management should integrate spatial data with early warning 

systems, risk zoning in spatial planning, and community capacity building for disaster 

preparedness to sustainably reduce social and economic impacts. 
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